UDC 629.7.05:681.586 **DOI** 10.52171/herald.308

Inertial Errors in Air Data and Inertial Reference Systems (ADIRS): Practical Identification and Mitigation R.R. Guliyev

Azerbaijan National Aviation Academy (Baku, Azerbaijan)

For correspondence:

Rauf Guliyev / e-mail: rauf.quliyev@naa.edu.az

Abstract

Air Data and Inertial Reference Systems (ADIRS) consist of pitot tubes, static ports, angle-of-attack (AoA) sensors, sometimes total air temperature (TAT) sensors, and strapdown inertial sensors to estimate airspeed, altitude, attitude, and acceleration. During maneuvers, turbulence, icing, or vibration, inertial effects distort (i) the aerometric channel (pressures, AoA) and (ii) the inertial channel itself (accelerometers, gyroscopes). This paper explains the main error mechanisms in simple terms, shows how engineers detect and separate them in data, and summarizes practical hardware and algorithmic mitigations that fit within certification constraints.

Keywords: ADIRS; pitot–static; inertial errors; pneumatic lag; g-sensitivity; vibration; synchronization; integrity monitoring; smart air data probe.

Submitted 11 October 2025 Published 22 October 2025

For citation:

R.R. Guliyev

[Inertial Errors in Air Data and Inertial Reference Systems (ADIRS): Practical Identification and Mitigation]

Herald of the Azerbaijan Engineering Academy, 2025, vol. 17 (3), online.

Hava məlumatları və inersial sistemlərdə (ADIRS) ətalət səhvləri: Praktiki identifikasiya və təsirlərin azaldılması

R.R. Quliyev

Azərbaycan Milli Aviasiya Akademiyası (Bakı, Azərbaycan)

Xülasə

Hava Məlumatı və İnersial İstinad Sistemləri (ADIRS) hava sürətini, hündürlüyünü, mövqeyini və təcilini qiymətləndirmək üçün pitot boruları, statik portlar, hücum bucağı (AoA) sensorları, bəzən ümumi hava temperaturu (TAT) sensorları və inersial sensorlardan ibarətdir. Manevrlər, turbulentlik, buzlanma və ya vibrasiya zamanı inersial təsirlər (i) aerometrik kanalı (təzyiqlər, AoA) və (ii) ətalət kanalının özünü (akselerometrlər, giroskoplar) təhrif edir. Bu iş əsas səhv mexanizmlərini sadə dillə izah edir, mühəndislərin onları məlumatlarda necə aşkar etdiyini və ayırdığını göstərir və sertifikatlaşdırma məhdudiyyətlərinə uyğun gələn praktiki aparat və alqoritmik azaldılmaları ümumiləşdirir.

Açar sözlər: ADIRS; pitot-statik; ətalət səhvləri; pnevmatik səhvlər; g-həssaslıq; vibrasiya; sinxronizasiya; monitorinq; ağıllı hava məlumat zondu.

Инерциальные ошибки в воздушных данных и инерциальных системах отсчета (ADIRS): практическое выявление и устранение Р.Р. Гулиев

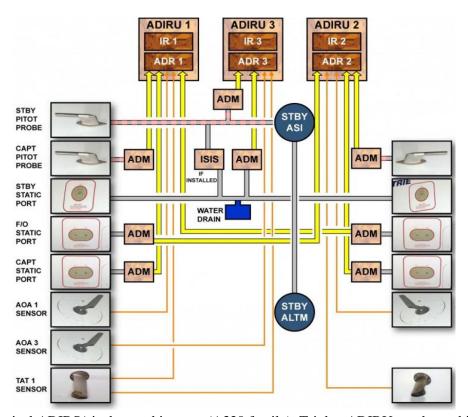
Азербайджанская Национальная Академия Авиации (Баку, Азербайджан)

Аннотация

Системы воздушных данных и инерциальных координат (ADIRS) состоят из трубок Пито, статических приемников, датчиков угла атаки (AoA), иногда датчиков полной температуры воздуха (TAT) и бесплатформенных инерциальных датчиков для оценки воздушной скорости, высоты, положения в пространстве и ускорения. Во время маневров, турбулентности, обледенения или вибрации инерциальные эффекты искажают (i) аэрометрический канал (давление, AoA) и (ii) сам инерциальный канал (акселерометры, гироскопы). В данной статье простыми словами объясняются основные механизмы возникновения ошибок, показывается, как инженеры обнаруживают и разделяют их в данных, а также обобщаются практические аппаратные и алгоритмические методы их устранения, соответствующие требованиям сертификации.

Ключевые слова: ADIRS; пито-статический; инерционные ошибки; пневматическая задержка; чувствительность к перегрузкам; вибрация; синхронизация; контроль целостности; интеллектуальный датчик воздушных данных.

Introduction


Modern aircraft use an Air Data and Inertial Reference System (ADIRS) to provide the core flight variables for displays, flight control, and navigation. ADIRS integrates:

Air-data (aerometric) path - The pitot probe measures total (stagnation) pressure and static ports measure static pressure; together these yield calibrated airspeed, Mach (with temperature), barometric altitude, and vertical speed. Angle-of-attack (AoA) is measured by a vane or differential ports, and total air temperature (TAT) is sensed by a dedicated probe. Pressures are conveyed to Air Data

Modules (ADMs) via tubing; ADMs convert pressure to electrical signals [1].

Inertial path - The Inertial Reference Unit (IRU) contains a strapdown IMU with three orthogonal accelerometers (longitudinal, lateral, vertical) and three orthogonal gyroscopes (roll, pitch, yaw), from these, the system computes attitude and angular rates and supports short-term motion estimation [2].

Fusion and integrity - A central estimator (within the ADIRU) time-aligns and fuses air-data and inertial signals, applies reasonableness checks (residual tests), and outputs validated states and health flags to avionics and standby instruments [1].

Figure 1 – Typical ADIRS/air-data architecture (A320 family). Triplex ADIRUs each combine an Inertial Reference (IR) and an Air Data Reference (ADR). Air Data Modules (ADMs) digitize pressures from pitot probes (total) and static ports (static); AoA and TAT sensors provide additional inputs; a standby chain feeds standby instruments [3].

Background and Definitions

An Air Data Inertial Reference System (ADIRS) combines two parts:

Aerometric part (air data): pitot-static pressure, total air temperature, and angle of

attack (AoA), from these we get indicated airspeed (IAS), altitude, and vertical speed.

Inertial part (IMU): gyroscopes and accelerometers, from these we get attitude (pitch/roll/yaw), angular rates, and specific force [4].

Before the system shares values with other avionics (auto-flight, FMS, displays), the two parts are time-aligned and fused. If the inertial part has errors, those errors can appear in air-data outputs because the fusion compares and combines both parts [5].

Key terms used in this paper

Residual: the difference between what the inertial part predicts for a quantity and what the air-data part measures.

Coherence: how similar two signals are in the frequency sense.

Latency: delay from sensing to output.

Integrity monitoring: simple checks that say "use / do not use" a signal (with clear rules).

The main idea is inertial errors do not stay inside the IMU. They show up as patterns in air-data values when the two parts interact.

Figure 2 – ADIRS with Aerometric and Inertial inputs, Time Alignment, Fusion, and Integrity Checks. Alignment removes lag; outputs maintain bounded latency (The figure is author-generated).

Scope

This article focuses on transportcategory aircraft that use standard pitot-static installations together with navigation-grade inertial measurement units (IMUs) typical of airline service. The operating context is flight—take-off, normal climb, cruise, descent, and approach—where the ADIRS must provide stable and timely data to other avionics, within this setting, the paper explains which inertial error sources are most relevant for air-data functions, how these errors appear in observable signals (time traces, simple spectra, and context bins such as angle of attack), and which basic checks can reveal them [9].

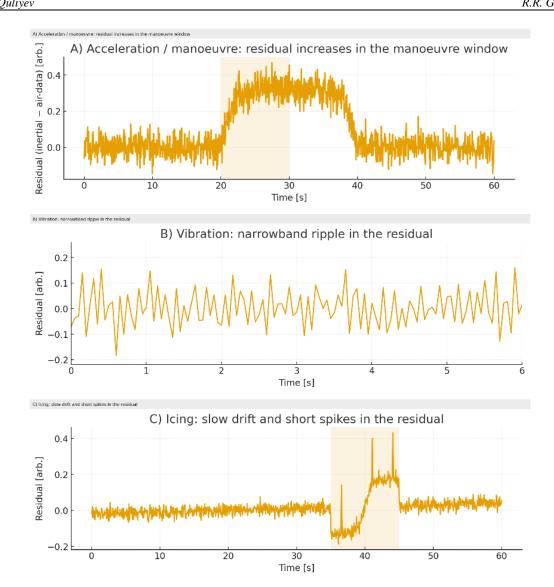
The intent is descriptive rather than experimental, and paper consolidates practical engineering knowledge, and emphasizes methods that are deterministic, explainable, and compatible with certification constraints on latency and complexity. New simulations, quantitative performance claims, and detailed mathematical derivations are outside the scope.

How inertial errors appear in air-data outputs

In the ADIRS, the aerometric and inertial parts are compared and fused, because of this interaction, imperfections in the inertial measurements can be observed inside air-data quantities such as indicated airspeed, altitude, and vertical speed. The most important mechanisms vibration coupling, are acceleration (g-sensitivity) during manoeuvres, angle-of-attack and sideslip effects, timing and synchronization issues, and temperature or icing effects. Each mechanism leaves a characteristic pattern that can be recognized without heavy mathematics.

Vibration - Structural and engine vibration can couple into the IMU and, in some cases, into air-data sensors and

plumbing. In practice this produces small ripples or occasional spikes in the difference between an inertial prediction and the aerometric measurement (the residual). If the residual is viewed in the frequency domain, narrow peaks often appear near known engine or structural orders. These peaks can bias simple integrity checks or force unnecessary smoothing. The key point is that the contamination is narrowband and repeatable, not random.


Acceleration and g-sensitivity - During turns, pull-ups, or other manoeuvres, specific-force levels change and a small part of this change appears as bias in accelerometers and, indirectly, in gyros. At the same time, the pneumatic path responds more slowly than the inertial prediction because of transport delay. The observable result is a residual that grows with g-level and changes sign with the direction of the manoeuvre. This can be misinterpreted as an air-data problem unless the acceleration context is considered.

Angle of attack and sideslip - Local airflow around the fuselage and static ports varies with angle of attack (AoA) and sideslip (β) . Although this is usually framed as an "air-

data" issue, its signature becomes visible when compared against inertial predictions. The error typically follows a smooth, stable curve of indicated airspeed (or altitude) error versus AoA or β , sometimes with dependence on configuration such as flaps or gear. The stability of this curve means it is predictable and therefore correctable once identified [8].

Timing and synchronization - The aerometric and inertial signals are sampled and buffered separately, and the air-data path adds physical delay. When timestamps are not aligned, the signals agree best only after a small time shift; this appears as a correlation peak at a non-zero lag and reduced agreement in some frequency bands. Correcting the timing often removes several other symptoms, so it should be treated first.

Temperature and icing - Sensor outputs drift with temperature, and ice can change port geometry or partially block lines. In practice this causes slow residual drift with outside-air temperature and, during icing onset or shedding, short spikes or temporary loss of sensitivity [6,7]. These cases call for heating, drainage, and brief inhibits rather than algorithm changes.

Figure 3. Canonical residual fingerprints: (A) manoeuvre—residual increases in the manoeuvre window; (B) vibration—narrowband ripple in the residual; (C) icing—slow drift with short spikes. Schematic illustration by the author for explanatory purposes. The figure is author-generated schematic illustration created to explain typical error patterns in an ADIRS. They were produced in Python (Matplotlib) with simple synthetic signals chosen to mimic three situations.

Simple diagnostics

• Timing first

Estimate the relative delay between an inertial-predicted rate (e.g., vertical dynamics from the IMU) and the corresponding air-data rate. A simple correlation-versus-lag scan is sufficient. If the correlation peaks at a non-zero lag and coherence improves after shifting one signal, the dominant issue is timing rather than physics.

Time-domain residuals

Form a residual as "inertial prediction minus air-data measurement." In short windows, look for (i) sustained bias (installation or temperature), (ii) bursty excursions (vibration or contamination), and (iii) offsets that change sign with manoeuvres (g-sensitivity).

Narrowband screening

Compute a one-sided spectrum of the residual. Stable, narrow peaks near engine/structural

orders indicate vibration imprint and justify targeted - not blanket - filtering.

• Context binning

Bin the residual by angle of attack (or β) and, if available, by configuration (flaps/gear). A smooth monotone trend indicates a position-error curve that can be scheduled or corrected.

Mitigation principles

Mitigation begins with time alignment [10]. The aerometric and inertial channels must be placed on the same clock using a fixed delay equal to the measured lag; this keeps latency predictable and prevents timing errors from appearing as false physics. The estimated lag and its short-term variation should be recorded as a health metric so that maintenance teams can see whether timing is stable across phases of flight [11, 12].

Once timing is correct, noise control should be applied in a targeted way. When the residual spectrum shows the same narrow peaks at engine or structural orders, a linear-phase notch with documented group delay is appropriate. Wide, aggressive smoothing should be avoided; instead, air-data rates can be smoothed with short, fixed windows chosen from observed stability so that genuine aircraft dynamics are preserved and latency budgets are respected [10].

The system should include simple integrity logic that is easy to audit. Residual thresholds, together with clear inhibit and restore conditions, allow the system to suppress obviously unreliable data without complex adaptation. Where redundancy exists, straightforward voting and reversion rules are preferred over opaque heuristics, and any rule

changes must be traceable in the software configuration [10].

Finally, mitigation depends on good hardware practice and configuration control. Pneumatic lines should remain short and drained; probe heating and AoA vane condition must be verified; and all filter coefficients and alignment values should be kept under versioned control. With these measures in place - deterministic alignment, selective filtering, bounded smoothing, simple integrity, and disciplined maintenance – the ADIRS remains explainable, certifiable, and robust to the inertial-origin effects described in the previous sections.

Conclusion

Inertial imperfections - vibration, gsensitivity in manoeuvres, AoA/β-dependent position effects, timing/synchronization, and temperature/icing -can appear inside air-data outputs because the aerometric and inertial channels interact in the ADIRS. A lightweight workflow - timing check → residual statistics \rightarrow narrowband screening \rightarrow AoA/ β context bins—separates mechanisms without heavy mathematics. Corresponding actions (fixed targeted linear-phase alignment, filtering, bounded smoothing, and simple integrity logic) are deterministic, auditable, and compatible with certification constraints on latency and complexity.

Conflict of Interests

The author declares there is no conflicts of interests related to the publication of this article.

REFERENCES

- 1. Kivokurtsev A.L., Sokolov O.A., Yurin A.Y. Opyt tekhnicheskoj ekspluatatsii sovmeshchennoy inertsialno-vozdushnoy sistemy ADIRS samoleta A-320. Crede Experto: transport, obshchestvo, obrazovanie, yazyk 2023, 1, 134.
- **2. Airbus.** A318/A319/A320/A321 Flight Crew Techniques Manual (FCTM). Airbus S.A.S., Issue 1, Mar 22, 2017.
- **3. WTRUIB Training**, "Air Data Probes Presentation," Dec. 18, 2019. [Online]. Available: https://wtruib.ru/training_A320F/air-data-probes-presentation/. Accessed: Oct. 6, 2025.
- 4. Rovelli M., Brandl A., Di Bitonto S., Di Donfrancesco F., Maruccia E., Viglietti I., Marchetti D. Hybrid air data system architecture: accuracy improvement on an existing ADS architecture. Aerotecnica Missili & Spazio 2025.
- **5. Airbus.** Single Aisle Technical Training Manual—Maintenance Course T1 & T2: 34 Navigation. Airbus S.A.S., Oct 14, 2005.
- **6. Sable R.** Pitot probe and total air temperature (TAT) probe ice crystal icing impact to aircraft operation and methods to improve probe performance. SAE Technical Paper 2023-01-1395, 2023.
- **7. Ratvasky T.P., Strapp J.W., Lilie L.E., Bansemer A., Chen R.** Air data probe anomalies in flight through measured high ice water content conditions. In AIAA Aviation Forum and ASCEND 2024 Conference Proceedings, 2024.
- **8. Zhai S., Li G., Huang P., Hou M., Jia Q.** Angle-of-attack and angle-of-sideslip estimation and complementary filter design for civil aircraft. ISA Transactions 2024, 154, 40–56.
- **9. Honeywell.** Air Data Inertial Reference System (ADIRS) for Airbus aircraft. Honeywell International Inc., May 2007.
- **10. Raab C., Fezans N.** Measuring the angle of attack practical considerations for the development of fault detection residuals. In Proc. 34th Congress of the International Council of the Aeronautical Sciences (ICAS 2024), 2024.
 - 11. WTRUIB Training. ADIRS alignment through MCDU. WTRUIB Training, 2020.
- **12. Karimli T.I.** Tuning for the Schuler Period of Primary Flight and Inertial Navigation Devices. Herald of the Azerbaijan Engineering Academy. 2023, vol. 15, no. 2, pp.7-14.