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Abstract 

The existing methods for determining the internal (residual, shrinkage) stresses arising from the curing of thin 
films of paint and varnish coatings (PVC), based on the cantilever bending of the substrate and the difference in the 
thicknesses of the wet and dry coatings, are analyzed. The dependence of their accuracy on the film / substrate thick-
ness ratio and the uniformity of the applied film is noted. The application of atomic force microscopy methods based 
on measuring the geometry of the regular microrelief (RMR) of the film surface, which serves as a characteristic 
manifestation of its shrinkage deformations, is considered. It is noted that when applying the Euler problem on the 
stability of a compressed rod, the method demonstrates the calculated stress values unattainable for most polymers. 
The calculation of internal stresses and strains was carried out on the basis of a stochastic approach, taking into ac-
count the "checkerboard" distribution of deformation defects on the outer surface of the film. On the example of 
RMR film of polyester urethane varnish, the level of internal stresses was assessed using the proposed and existing 
methods. The values of internal stresses obtained by the three methods relatively coincide with each other, the differ-
ence between them does not exceed ~20%. 
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Polimer plyonkaların səthin mikroprofili üzrə gərginliyinin 
qiymətləndirilməsinə stoxastik yanaşma 
A.M. Paşayev, Ə.X. Canəhmədov 
Azərbaycan Milli Aviasiya Akademiyası (Mərdəkan pr. 30, Bakı, AZ1045, Azərbaycan) 
 
Yazışma üçün: 
Canəhmədov Əhəd / e-mail: dzhanakhmedov@yahoo.com 
 
Annotasiya 

Lak-boya örtüklərinin (LBÖ) nazik plyonkalarının sərtləşməsi zamanı yaranan, müvafiq olaraq, alt qatın konsol 
əyilməsinə, həmçinin yaş və quru səthlərin  qalınlıqlarının fərqinə əsaslanan daxili (qalıq, büzülmə) gərginliyin təyin 
olunmasının mövcud üsulları təhlil olunub. Onların dəqiqliyinin plyonkanın/alt qatın qalınlığı nisbətindən və 
plyonkanın bərabərliyindən asılılığı qeyd olunub. Plyonkanın səthinin büzülmə deformasiyalarının xarakterik 
təzahürü kimi xidmət edən müntəzəm mikrorelyefinin (MMR) həndəsi parametrlərinin ölçülməsinə əsaslanan atom-
qüvvə mikroskopu metodu ilə tətbiqinə baxılıb. Qeyd olunub ki, sıxılmış çubuğun dayanıqlığı haqda Eyler 
məsələsinin tətbiqi zamanı bu metod əksər polimerlər üçün əlçatmaz hesab olunan gərginliyin hesablanmış qiymətini 
nümayiş etdirir. Daxili gərginliyin və deformasiyanın hesablanması plyonkanın xarici səthində deformasiya nöqsan-
larının “şahmat” paylanmasını nəzərə alaraq, stoxastik yanaşma əsasında aparılıb. Poliefiruretan boyanın MMR pl-
yonkalar nümunəsində təklif olunan və mövcud metodlardan istifadə edilərək daxili gərginlik səviyyəsinin qiymət-
ləndirilməsi aparılıb. Hər üç metodla alınan daxili gərginlik kəmiyyətlərinin qiymətləri, bir-biri ilə nisbətən uyğun 
gəlir, onlar arasındakı fərq ~20% həddindədir. 
Açar sözlər:  lak-boya örtüyü, alt qat, müntəzəm mikrorelyef, büzülmə, büzücü gərginlik, daxili gərginlik, 

sərtləşmə, poliefiruretan boya, nazik plyonka. 
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Стохастический подход к оценке напряжений полимерных  
плёнок по микропрофилю поверхности 
А.М. Пашаев, А.Х. Джанахмедов  
Национальная авиационная академия Азербайджана (Мардакянский просп., 30, Баку, AZ1045, Азербайджан) 
 
Для переписки: 
Джанахмедов Ахад / e-mail: dzhanakhmedov@yahoo.com 
 
Аннотация 

Проанализированы существующие методы определения внутренних (остаточных, усадочных) напряже-
ний, возникающих при отверждении тонких плёнок лакокрасочных покрытий (ЛКП), основанные на кон-
сольном изгибе подложки и разности толщин мокрого и сухого покрытия, соответственно. Отмечена зависи-
мость их точности от соотношения толщин плёнка/подложка и однородности нанесённой плёнки. Рассмот-
рено применение методов атомно-силовой микроскопии, основанных на измерении геометрии регулярного 
микрорельефа (РМР) поверхности плёнки, служащего в качестве характерного проявления её усадочных де-
формаций. Отмечено, что при применении задачи Эйлера об устойчивости сжатого стержня метод демон-
стрирует недостижимые для большинства полимеров расчётные значения напряжения. Расчет внутренних 
напряжений и деформаций проведен на основе стохастического подхода с учетом «шахматного» распределе-
ния деформационных дефектов на наружной поверхности пленки. На примере РМР плёнки полиэфирурета-
нового лака проведена оценка уровня внутренних напряжений с использованием предлагаемой и существу-
ющих методик. Значения величин внутренних напряжений, полученные по трём методам, относительно сов-
падают друг с другом, разница между ними не превышает ~20%. 
Ключевые слова: лакокрасочное покрытие, подложка, регулярный микрорельеф, усадка, усадочные 

напряжения, внутренние напряжения, отверждение, полиэфируретановый лак, тонкая 
плёнка. 
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Introduction 
Protective paint and varnish coatings 

(PVC) of external surfaces of aircraft (AC) in 
the process of application and operation under-
go a significant mechanical impact, weakening 
the strength of the film and can lead to a viola-
tion of its continuity. 

During hardening of PVC, the paintwork 
goes through the shrinkage (contraction) as a 
result of the evaporation of volatile compo-
nents, polymerization, gelation, temperature 
drops and other processes. The adhesion con-
tact and microroughness of the relief of a rigid 
substrate do not allow the polymer film to 
freely shrink (“shrink”), as a result of which it 
shrinks in thickness and internal tensile stress-
es arise in it [1]. 

All this creates a number of problems as-
sociated with ensuring the strength and dura-
bility of protective coatings. Numerous publi-
cations of domestic and foreign authors are 
devoted to the study of the processes develop-
ing in the "substrate - coating" system ("flexi-
ble base - thin film", etc.), among which the 
works of V.Ye. Panin [2], and J.Hutchinson [3] 
et al. 

The internal (synonyms - residual, shrink-
age) stresses sharply weaken the cohesive and 
adhesive strength of the newly formed film, 
thereby accelerating the destructive physico-
chemical processes that cause its premature 
destruction during operation [4, 5, 6, 7]. 

Since the internal stresses largely deter-
mine the final morphology and properties of 
the coating and do not depend on the nature of 
the substrates [8], the assessment of their level 
is of theoretical and practical interest. 

A number of methods for determining 
shrinkage stresses in thin-film structures on 
rigid substrates are currently known. One of 
the first was the proposed method developed 

independently by A.T. Sanzharovsky and E. 
Korkoran and based on the calculation of 
stresses in the coating by the magnitude of de-
formations (deflection) of the substrate (canti-
lever bending tape) [9, 10, 11]. 

As a result, these works formed the basis 
of GOST 13036-67 (currently not valid accord-
ing to IUS 7-77) [12] and its current American 
analogue ASTM D6991-05 [13]. 

 
Purpose of work is to develop and test a 

method for determining the level of shrinkage 
stresses in curried PVC based on the character-
istics of its microrelief and its comparison with 
the values obtained using existing techniques. 
A preliminary analysis of linear disturbances is 
carried out, which determines the kinetics and 
energetics of the corrugation process, as well 
as the amplitude and wavelength of steady-
state oscillations. 

Due to the uncontrollability of external 
conditions affecting the properties of the sam-
ple, a stochastic approach was used to calculate 
the internal stresses and strains, taking into ac-
count the features of the film – substrate inter-
face. 

 
Problem Statement  

In this regard, the authors analyzed the ki-
netics and energetics of growth of film disturb-
ances as a result of the effect of loading the 
substrate on the deformation of the film prior 
to its solidification through the interface 
through a viscoelastic layer lying directly un-
der the film. As a result, by measuring the ge-
ometry of the RMR, the critical values of the 
parameters of the film vibrations are estimated, 
at which the vibrations acquire stability with 
the corresponding steady-state values of the 
amplitude and wavelength [14]. 
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The cured thin polymer film is taken to be 
the surface layer of the bulk of the substrate 
material with a surface layer / substrate inter-
face thickness equal to the film thickness. The 
loaded solid body of the substrate induces a 
"checkerboard" distribution of stresses and 
strains through the film / substrate interface, 
carrying deformation defects to the film sur-
face. To calculate normal and tangential stress-
es, a stochastic approach was used, taking into 
account the conditions for the formation of 
nonlinear waves of localized plastic flow of the 
parameters of the elements of the system under 
consideration at the meso and microscale lev-
els.  
 
Materials and existing methods for calculat-
ing internal stresses 

A two-component polyether urethane 
(PEU) varnish (𝐸 = 30 𝑀𝑃𝑎 , 𝜇 = 0.35  [15]) 
was chosen as the PVC under study. The var-
nish components (polyester and hardener) were 
mixed before application and applied to a sub-
strate (plate 102 × 12 × 0.254𝑚𝑚  made of 
08X18H10T steel, 𝐸 = 1.96 × 105𝑀𝑃𝑎 , 
𝜇 = 0.29 [16]) according to the manufacturer's 
instructions. 

The thickness of the film before and after 
curing was measured in accordance with [17, 
18, 19], respectively. Based on the data ob-
tained by methods [12] and [13], using formu-
las (1) and (2), the internal stresses in the PVC 
were calculated. 

To determine the internal stresses by the 
proposed method, the RMR of the surface of 
the hardened film was investigated on an AFM 
SOLVER NEXT (NT-MDT, Russia). The 
measurement was carried out by line-by-line 
scanning of a surface area 50 × 50 μm in size, 
as a result, two- and three-dimensional topo-
graphic images are formed, a profilogram is 

automatically calculated. As a sample, a frag-
ment of 5 × 5 × 0.254𝑚𝑚  in size was used, 
cut from the above steel plate after conducting 
research according to the methods [12, 13]. 

The essence of the technique lies in the 
fact that the coating is applied to one surface of 
a flat sample (tape), which is cantilever 
clamped in a rigid fixation. During the drying 
process, internal stresses arise in the coating, 
as a result of which the free end of the cantile-
ver deviates from its original position by an 
amount 𝑑 (deflection). 

The calculation of internal stresses is usu-
ally carried out according to the following 
formula: 

3

2 2

( )
3 ( )(1 ) (1 )

S C

S C

dE t dE t c
L c t c L

σ
µ µ

+
= +

+ − −
             (1) 

where 𝑑  – the deflection (deflection) of the 
free end of the console; 𝐸𝑠 – Young's modulus 
of the steel substrate; µs is the Poisson's ratio 
of the steel substrate; 𝐿 – the length of the con-
sole; t is the thickness of the console; 𝑐  – a 
coating thickness; 𝐸𝑐 – Young's modulus of the 
hardened coating; 𝜇𝑐  – Poisson's ratio of the 
coating material.  

As follows from formula (1), in order to 
calculate internal stresses, the cantilever meth-
od requires knowledge of eight Parameters of 
the film and substrate (cantilever deflection, 
geometric dimensions of the substrate, meha-
nical characteristics). 

The cantilever method is applicable for 
films with a thickness of 25. . .380𝜇𝑚. The ac-
curacy of the method is highly dependent on 
the film / substrate ratio and the uniformity of 
the applied film. Some difficulty of such 
measurements lies in the fact that, in addition 
to the shrinkage of the paintwork, the deflec-
tion of the tape-console is affected by such a 
difficult factor as the weight of the coating it-
self, which gradually decreases as it dries. 
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Compared with this method, a more sim-
plified formula was proposed in [14] to deter-
mine internal stresses in coatings:  

0 1

0

( )E h h
h

σ −
=                                               (2) 

where ℎ0 – the initial “wet” film thickness; ℎ1 
– a film thickness after curing; 𝐸  – Young's 
modulus of the hardened coating. 

The thickness of the cured film ℎ1 is de-
termined according to the standards [17] by 
microscopic examination of the cross section. 
Accurate measurement of the initial ("wet") ℎ0 
thickness of a thin layer of paint and varnish 
material (PVM)1 presents some difficulty. The 
existing methods for determining the thickness 
of "wet" polymer films [18, 19] prescribe di-
rect measurements using a probe instrument in 
the form of a toothed plate – Rossman's 
"comb". The protrusions (teeth) of the "comb" 
are immersed in the layer of the liquid film un-
til they touch the substrate. The height of the 
wetted edge of the teeth is considered equal to 
the thickness of the coating. However, already 
in the description of these methods, it is noted 
that they are approximate, and on substrates 
with an uneven or textured surface, they may 
give erroneous readings. 

In accordance with [20], for the paintwork 
of external surfaces, the 𝑅𝑧 value (the sum of 
the average absolute values of the heights of 
the five largest profile protrusions and the 
depths of the five largest profile valleys) with a 
base length of 2.5𝑚𝑚  should be less than 
0.001𝑚𝑚 (1𝜇𝑚), i.e., the surface should have 
meso- and micro-scale irregularities.  

                                                           
1  The difference between paints and varnishes materials 

(PVM) and paints and varnishes coatings (PVC) is to some 
extent conditional and suggests that the former determine 
the physicochemical properties, the latter – the geometric 
size and mechanical properties of the layer. 

According to the operational requirements 
[21, 22], the thickness of the cured paintwork 
must be at least 20% higher than the maximum 
height of the microroughness of the substrate. 
If this requirement is met, the film under con-
ditions of adhesive contact is no longer an 
equidistant surface copy of the smoothed mi-
crogeometry of the substrate but has its own 
regular microrelief (RMR) [23, 24, 25], formed 
under the action of deformation processes. 

Currently, SIEBIMM-methods2 for study-
ing the mechanical properties of films have 
become widespread, involving the measure-
ment of the geometric characteristics of their 
surface using atomic force microscopy (AFM). 
The appearance of RMR of thin films is con-
sidered by some authors on the basis of the Eu-
ler problem on the stability of a compressed 
rod: under a critical load, the film surface 
bends in the form of sinusoids with a period 𝜆 
and an amplitude 𝐴 [26, 27, 28, 29, 30, 31, 32]. 

In the same works, it is noted that the 
wavelength of the folds does not depend on the 
magnitude of stresses, is determined by the 
characteristics of the film and substrate and is a 
constant value for a particular pair of materials 
"film – substrate". In this case, the amplitude 
of the folds 𝐴 does not depend on the elastic 
properties of the film and substrate but in-
creases with increasing compressive stresses 
[33]. 

For films adhering to the substrate, wrin-
kling can occur only when the critical com-
pressive stress 𝜎𝑤 is exceeded:  

' 2'
3

'

3( )
4

f s
w

f

E E
E

σ =                            (3) 

where 𝐸𝑓′ = 𝐸𝑓
1 − 𝜇𝑓2
�  and 𝐸𝑠′ = 𝐸𝑠

1 − 𝜇𝑠2
�   

                                                           
2  SIEBIMM – strain-induced elastic buckling instability for 

mechanical measurements 
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are the moduli of longitudinal elasticity, 𝐸𝑓 , 
𝜇𝑓 , 𝐸𝑠 , 𝜇𝑠  are Young's moduli and Poisson's 
ratios of the film and substrate, respectively. 

When the compressive stress 𝜎  exceeds 
𝜎𝑤 , the film spontaneously bends, forming a 
periodic distribution of folds on the surface. 

However, this explanation of relief for-
mation presupposes loading by external hori-
zontal loads, which cause the loss of stability 
of the already hardened film. But since the 
modulus of longitudinal elasticity of even 
hardened paintwork materials PVM (𝐸𝑓′) is ap-
proximately three orders of magnitude lower 
than that of a metal substrate (𝐸𝑠′), the stresses 
𝜎𝑤 calculated by formula (3) will have values 
unattainable for most polymers, several times 
exceeding their ultimate strength. In this re-
gard, this model of relief formation is inappli-
cable for paintwork PVC. 

Apparently, from the moment the paint-
work material is applied to the substrate, due to 
the viscoelastic transition from the liquid state 
to the solid state, the density of the upper layer 
increases, and an elastic surface film gradually 
forms, which impedes the further exit of the 
vapor-gas mixture from the underlying layer of 
paintwork materials PVM. Based on this, the 
paintwork PVC at the initial stage of curing 
can be represented as a two-layer system con-
sisting of a thin elastic surface layer and an 
underlying deep viscoelastic layer [34, 35]. 

Probably, evaporating steam-gas flows, 
locally uplifting the elastic film during mass 
transfer, create internal stresses in it, forming a 
characteristic folded surface with a "checker-
board" effect of regular alternation of convex 
and concave zones [28]. The meso-sub-
structure of the extruded material appears on 
the surface. According to the classification of 
scale levels, adopted in the works of V.E. 
Panin's school [2], the mesoscopic scale level 

is subdivided into mesoscale-1 (0.1 − 10𝜇𝑚) 
and mesoscale-2 (10 − 500𝜇𝑚) [29]. 
Proposed approach to solving the problem  

We consider the deformation of the cured 
top layer of the paint and varnish coating on 
the uncured bottom layer as a coherent defor-
mation of an elastic film on a viscoelastic un-
derlayer. As is known [36, 37], in this case, the 
parameters of folds are largely determined by 
the kinetics of their formation and growth. The 
mechanism of the wrinkling process formed by 
the layer underlying the film is usually inter-
preted as a stress-induced instability, similar to 
the buckling of an elastic bar under compres-
sion. If this layer has elasticity, then there is a 
critical compressive stress, above which the 
film begins to corrugate with the correspond-
ing wavelength obtained by minimizing the 
total elastic energy of the film and substrate 
[38, 39, 40]. Under typical compressive stress, 
corrugations are formed only when the sub-
strate is significantly softer than the film. If the 
substrate is elastic, then the corrugation be-
comes a kinetic process [40, 41, 42]. Since the 
viscous substrate does not have a reserve of 
elastic energy, the upper surface of the com-
pressed covering film is always energetically 
unstable. The viscous flow on the substrate 
regulates the kinetics of corrugation growth by 
choosing the most growing wavelength. More 
generally, when the substrate is viscoelastic 
(for example, crosslinked polymers), both en-
ergy and kinetics play an important role. The 
spectrum of formed corrugated patterns exper-
imentally observed in metal - polymer bilayers 
[43] demonstrates the features of the kinetic 
process. Analysis of linear perturbations shows 
that the viscoelastic property of the substrate 
has a significant contribution to the stability 
and kinetics of the corrugation process [37]. 
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Let us consider the process of modeling 
the evolution of corrugation in a thin elastic - 
viscoelastic bilayer described in [36] in the 
limiting case of analysis of linear perturba-
tions. The generated model is based on the ap-
plication of the nonlinear theory of Karman 
plates [44] to the elastic layer and the approx-
imation of the viscoelastic layer using a thin 
layer. Although the model is applicable to 2D 
corrugation, the focus will be on one-
dimensional corrugation under in-plane stress. 

Consider an elastic film of thickness ℎ𝑓 
resting on a viscoelastic layer of thickness 𝐻, 
which, in turn, lies on a rigid substrate in Fig. 1 
[36]. 

 

 

Figure 1 – The schematic of an elastic-viscous bilayer 
on a rigid substrate: (a) standard state and (b) wrinkling 
state 
 

In the initial state (Fig.1a), both layers 
have a flat shape, and the elastic layer is sub-
jected to biaxial residual stress, and there are 
no traces on the bilayer surface. In the wrin-
kling state (Fig.1b), both in-plane displace-
ments and out-of-plane displacements occur in 
the elastic layer caused by the residual stress 
𝜎0  (𝜎0 < 0 ), while the viscoelastic layer is 
simultaneously deformed. In Fig.1(a) 𝑥1 − 𝑥2   

denotes a plane in a rectangular Cartesian co-
ordinate system that serves as an interface be-
tween two layers in a bilayer.  
Linear analysis of disturbances 

The elastic film model will be formulated 
on the basis of Karman's nonlinear theory of 
bending of elastic plates [44]. Elastic defor-
mations of the film are characterized by bulg-
ing (lateral deflection) 𝑤 and displacement 𝑢𝛼 
along the plane (𝛼 = 1.2). 

Suppose the viscoelastic layer experiences 
slight deflection from the horizontal position 

𝑤(𝑥, 𝑡) = 𝐴(𝑡)𝑐𝑜𝑠𝑘𝑥                                      (4) 

with amplitude 𝐴(𝑡) and length 𝐿 = 2𝜋 𝑘⁄  (𝑘 – 
a wave number). In the analysis of linear per-
turbations, the evolution of displacements in 
the plane is not associated with swelling (lat-
eral deflection). 

It is assumed that the layer on which the 
film directly rests is isotropic and linearly vis-
coelastic. According to the theory of viscoelas-
ticity [45], the stress-strain relation is written 
in the integral form. 

𝜎𝛼𝛽(𝑡) = 2 �𝜇(𝑡 − 𝜏)
𝜕𝜀𝛼𝛽(𝜏)
𝜕𝜏

𝑑𝜏 +
𝑡

−∞

 

+𝛿𝛼𝛽 �𝜆(𝑡 − 𝜏)
𝜕𝜀𝛾𝛾(𝜏)
𝜕𝜏

𝑑𝜏
𝑡

−∞

 
(5) 

where 𝜇(𝑡) and 𝜆(𝑡) – the viscoelastic relaxa-
tion modules 𝛿𝛼𝛽 – the Kronecker symbol. The 
𝛼𝛽𝛾 indices take values 1 and 2; repetition of 
the index in (5) means the summation over 1 
and 2. Under the assumption that there is no 
external force, neglecting the inertia of quasi-
static deformation, the equilibrium condition 
can be written in the form [37]: 

𝜕𝜎𝛼𝛽
𝜕𝑥𝛽

= 0.                                                             (6) 
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For small deformations, the strain - dis-
placement relation takes the form: 

𝜀𝛼𝛽 =
1
2
�
𝜕𝑢𝛼
𝜕𝑥𝛽

+
𝜕𝑢𝛽
𝜕𝑥𝛼

� .                                    (7) 

The viscoelastic layer is not loaded at the ini-
tial moment of time (𝑡 = 0 ) and undergoes 
normal and shear displacements on its upper 
surface at 𝑡 >  0:  

𝜎33 = 𝑆3(𝑥1, 𝑥2, 𝑡) 𝑎𝑛𝑑 𝜎3,𝛼 + 

= 𝑆𝛼(𝑥1, 𝑥2, 𝑡)     𝑎𝑡  𝑥3 = 0.                           (8) 

         There are no displacements on the bot-
tom surface of this layer: 

𝑢𝛼 = 𝑢3 = 0     𝑎𝑡  𝑥3 = −𝐻.                      (9)  

In the general case, the surface of the vis-
coelastic layer undergoes both in-plane and 
out-of-plane displacements, which are inter-
connected with each other and only in two spe-
cial cases they may not have a connection. In 
the first case, when the viscoelastic layer has a 
very large thickness (𝑘𝐻 →  ∞) and is incom-
pressible (𝜈 =  0.5). This case is considered in 
detail in [37]. In the second case, when this 
layer is very thin (𝑘𝐻 →  0); it is this case that 
is most typical for paints and varnishes (PVC) 
and will be described in detail below. 

For the relaxation modulus 𝜇(𝑡) , the 
Kelvin model of linear viscoelasticity will be 
used, which is a mechanical analogue of a de-
vice consisting of a spring and a parallel acting 
shock absorber 

𝜇(𝑡) = 𝜇∞ + 𝜂 ∙ 𝛿(𝑡),                                   (10) 

where 𝜇∞ – the stiffness of the spring, repre-
senting the elastic shear modulus with the rub-
berized limit position; 𝜂 – viscosity. 

The interface between elastic and viscoe-
lastic layers is maintained at each deformation. 
Consequently, the displacements and their 

traces remain continuous at the interface that 
connects the equations of equilibrium of the 
elastic layer with the time-dependent responses 
of the viscoelastic layer, which leads to the 
equations: 
𝜕𝑤
𝜕𝑡

=
1 − 2𝜈

2(1 − 𝜈)
∙
𝐻
𝜂 �

−𝐷𝑓
𝜕4𝑤

𝜕𝑥𝛼𝜕𝑥𝛼𝜕𝑥𝛽𝜕𝑥𝛽
+ 

𝑁𝛼𝛽
𝜕2𝑤

𝜕𝑥𝛼𝜕𝑥𝛽
+
𝜕𝑁𝛼𝛽
𝜕𝑥𝛽

∙
𝜕𝑤
𝜕𝑥𝛼

� −
𝜇∞
𝜂
𝑤   

(11) 

    
𝜕𝑢𝛼
𝜕𝑡

=
𝐻
𝜂
∙
𝜕𝑁𝛼𝛽
𝜕𝑥𝛽

−
𝜇∞
𝜂
𝑢𝛼 ,                                (12) 

Where 

 𝐷𝑓 = 𝐸𝑓∙ℎ3

12�1−𝜈𝑓
2�

,   𝑁𝛼𝛽 = 𝜎0ℎ𝑓𝛿𝛼𝛽 + 

+
𝐸𝑓ℎ𝑓

1 − 𝜈𝑓2
��1 − 𝜈𝑓�𝜀𝛼𝛽 + 𝜈𝑓𝜀𝛾𝛾𝛿𝛼𝛽� 

(13) 

Equations (11) and (12) are interrelated 
nonlinear evolution equations that can be 
solved numerically by simulating three-
dimensional deformations of an elastic - visco-
elastic bilayer and the evolution of the result-
ing two-dimensional corrugated patterns. For 
simplicity, we will analyze in detail only the 
deformations from in-plane compression (ten-
sion) and one-dimensional corrugations. 
Equations (11) – (12) in this case take the 
form: 

𝜕𝑤
𝜕𝑡

=
1 − 2𝜈

2(1 − 𝜈)
∙
𝐻
𝜂
�−𝐷𝑓

𝜕4𝑤
𝜕𝑥4

+ 

+𝑁
𝜕2𝑤
𝜕𝑥2

+
𝜕𝑁
𝜕𝑥

∙
𝜕𝑤
𝜕𝑥
� −

𝜇∞
𝜂
𝑤, 

(14) 

𝜕𝑢
𝜕𝑡

=
𝐻
𝜂
∙
𝜕𝑁
𝜕𝑥

−
𝜇∞
𝜂
𝑢,                                      (15) 

where 

𝑁 = 𝜎0ℎ𝑓 +
𝐸𝑓ℎ𝑓

1 − 𝜈𝑓2
�
𝜕𝑢
𝜕𝑥

+
1
2
�
𝜕𝑤
𝜕𝑥
�
2

�       (16) 
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Substituting (4) into (14) and leaving only 
the leading terms containing the small parame-
ter 𝐴(𝑡), we obtain the equation: 
𝑑𝐴
𝑑𝑡

=
𝛼𝐸𝑓 − 𝜇∞

𝜂
𝐴(𝑡),                                    (17) 

Where 

𝛼 =
(1 − 2𝜈)𝑘2𝐻ℎ𝑓

24(1 − 𝜈)�1 − 𝜈𝑓2�
  

 

�−𝑘2ℎ𝑓2 −
12�1 − 𝜈𝑓2�𝜎0

𝐸𝑓
�   

(18) 

 The solution to equation (17) is repre-
sented in the form 

𝐴(𝑡) = 𝐴0𝑒𝑥𝑝 �𝑠 ∙
𝑡
𝜏
� ,                                   (19) 

where 𝐴0  is the initial amplitude of the dis-
turbance; 𝜏 = 𝜂 𝐸𝑓⁄  is the characteristic time 
scale and 𝑠 = 𝛼 − 𝜇∞ 𝐸𝑓⁄  is the dimensionless 
growth order of the disturbance. The stability 
of the bilayer depends on the sign of the pa-
rameter 𝑠 . If 𝑠 < 0  for all wave numbers k, 
then the bilayer is stable and remains flat. Oth-
erwise, when 𝑠 > 0 for any admissible wave-
numbers, the bilayer is unstable and the dis-
turbances grow, forming corrugations. In this 
case, the amplitude grows exponentially with 
time in the initial stage. As shown in [37], the 
initial stage of growth can be non-exponential 
if the viscoelastic layer has a finite elastic 
modulus in the glassy state (elastic limit as 
𝑡 →  0). 

 The growth order of s depends on the 
disturbance wavelength (𝐿 = 2𝜋 𝑘⁄ ) for vari-
ous ratios 𝜇∞ 𝐸𝑓⁄ . In the limiting case, when 
𝜇∞ = 0 , we have 𝑠 =  𝛼  and 𝑠 >  0  (taking 
into account 𝜎0 < 0 ) throughout the entire 
length of the disturbance waves. Therefore, for 
𝑠 >  0, the bilayer will be unstable. The critical 
value of the wavelength corresponding 
𝑡𝑜 𝑠 →  + 0 is 

𝐿𝑐 = 𝜋ℎ𝑓�−
𝐸𝑓

3�1 − 𝜈𝑓2�𝜎0
 ,                      (20) 

which coincides with the critical length of the 
Euler bend. The growth order is positive for 
𝐿 >  𝐿𝑐 and has a peak at the wavelength 

𝐿𝑚 = 𝜋ℎ𝑓�−
2𝐸𝑓

3�1 − 𝜈𝑓2�𝜎0
 .                       (21) 

 As the ratio 𝜇∞ 𝐸𝑓⁄  increases, the value 
of 𝑠 decreases without changing the shape of 
the dependence on the normal wavelength 
𝐿 ℎ𝑓⁄ . As a result, we obtain the second critical 
value of the wavelength determined by formula 
(21). The growth order of 𝑠  remains positive 
when 𝐿 changes in the interval between these 
two critical values. On the other hand, the fast-
est growth of the wavelength does not change, 
but the corresponding order of growth of 𝑠 
drops to zero when the value of 𝐿 approaches 
the boundaries of this interval from the inside 
at the critical value of the ratio 𝜇∞ 𝐸𝑓⁄  corres-
ponding to the equality 𝑠 =  + 0: 

�
𝜇∞
𝐸𝑓
�
𝑐

=
3�1 − 𝜈𝑓2�(1 − 2𝜈)

2(1 − 𝜈)
𝐻
ℎ𝑓
�
𝜎0
𝐸𝑓
�
2

,   (22) 

whence we find the critical value 𝜎0𝑐  of the 
compressive stress, below which the bilayer 
becomes stable: 

𝜎0с = 𝐸𝑓 �𝛼
ℎ𝑓
𝐻

2(1 − 𝜈)
3�1 − 𝜈𝑓2�(1 − 2𝜈)

�
1/2

    (23) 

 The bilayer becomes stable when 
𝜇∞ 𝐸𝑓⁄  is greater than the critical value (22). 
According to the criticality condition (22), the 
stability of an elastic – viscoelastic bilayer de-
pends on the elasticity modulus (i.e., on the 
extended limit of the relaxation modulus 𝜇∞) 
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of the viscoelastic layer but does not depend on 
the initial modulus (i.e., on the glassy state). In 
other words, despite the initial high viscosity 
or even stiffness of the viscoelastic layer, the 
bilayer “foresees” the subsequent softening of 
the layer and becomes spontaneously unstable. 
The time scale of the corrugation growth is 
proportional to the viscosity, and the order of 
growth increases with decreasing elasticity 
modulus. The wavelength of the fastest grow-
ing mode, however, does not depend on the 
viscoelastic layer, as follows from (21). As 
shown in [37], the wavelength of the rapidly 
growing growth is weakly dependent on the 
thickness ratio 𝐻 ℎ𝑓⁄  and Poisson's ratio. The 
approximation using a thin layer leads to good 
accuracy in determining the wavelength but 
underestimates the order of growth of the fast-
growing mode when the thickness ratio 𝐻 ℎ𝑓⁄  
is greater than 2. 

 Setting 𝜕 𝜕𝑡⁄ = 0 in equations (14) and 
(15), we obtain two coupled nonlinear ordinary 
differential equations, each of which can be 
solved in the case of an equilibrium state. First 
of all, we note that the equilibrium amplitude 
of a sinusoidal corrugation with a wave num-
ber 𝑘 is given by the expression 

 

𝐴𝑒𝑞 =
2�1 − 𝜈𝑓2

𝑘 �−
𝜎0
𝐸𝑓
−

�𝑘ℎ𝑓�
2

12�1− 𝜈𝑓2�
−    

−  
2(1 − 𝜈)
1 − 2𝜈

𝜇∞
𝐸𝑓

1
𝑘2𝐻ℎ𝑓

�
1/2

 

(24) 

 

which is valid only if the bilayer is unstable 
and there is a nonzero real-valued equilibrium 
amplitude of the corrugation. Moreover, mini-
mizing the elastic stress energy in the bilayer 
with respect to the wavenumber leads to the 
next equilibrium corrugation wavelength: 

𝐿𝑒𝑞 = 𝜋ℎ𝑓 �
2(1 − 2𝜈)

3(1 − 𝜈)�1− 𝜈𝑓2�
𝐸𝑓
𝜇∞

𝐻
ℎ𝑓
�
1/4

  (25) 

Comparing (25) with the fastest growing 
wavelength (21), it can be noted that they can 
be completely independent. The fastest grow-
ing wavelength, which dominates the initial 
growth, is determined by kinetics and depends 
on the compressive stress 𝜎0 in the elastic layer 
but does not depend on the viscoelastic layer. 
The equilibrium wavelength, on the contrary, 
is determined by energy and depends on the 
thickness and elastic modulus of the viscoelas-
tic layer but does not depend on the stress in 
the elastic layer. This independence makes it 
possible to simultaneously determine the re-
sidual stress 𝜎0  and the modulus of elasticity 
𝜇∞ from the initial and final corrugation wave-
lengths, respectively. 

Indeed, from the kinetics of the process, 
we find by formula (23) the critical value 
𝜎0 = 𝜎0𝑐 , below which the bilayer is stable. 
Substituting 𝜎0 = 𝜎0𝑐 into (21) and equating the 
right-hand sides of expressions (21) and (25), 
we find 

𝜇∞ =
3�1 − 𝜈𝑓2�(1− 2𝜈)

2(1 − 2𝜈)
(𝜎0𝑐)2

𝐸𝑓
𝐻
ℎ𝑓

.           (26) 

 In a state of equilibrium, the shear dis-
placement on the surface is close to zero, and 
the lateral displacement is approximately de-
scribed by the formula 

𝑢 =
1
8
𝑘𝐴𝑒𝑞2 𝑠𝑖𝑛(2𝑘𝑥),                                     (27) 

where 𝑘 = 2𝜋 𝐿𝑒𝑞⁄ . Thus, the in-plane dis-
placement wavelength is equal to half the cor-
rugation wavelength at equilibrium. 

When the "film-substrate" system is 
cooled, the surface layer of the polymer coat-
ing is cured, which is accompanied by its 
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shrinkage information. In this case, tensile in-
ternal stresses develop in the cured layer, 
which generate deformations of the interface 
when the system is loaded. In this case, the dis-
tribution of stresses and strains at the interface 
"surface layer - substrate" appears in the form 
of modes of the "chess-board" or "herring 
bone" type [39]. 

 These modes were considered in [39] 
based on the analysis of classical bends of a 
rigid substrate using a linearized analysis of 
stability. 

Let 𝐸, 𝜈, 𝛼 and 𝐸𝑠, 𝜈𝑠, 𝛼𝑠 – Young's mod-
ulus, Poisson's ratio and thermal expansion co-
efficient of the film and substrate, respectively; 
t-film thickness. Let us assume that the sub-
strate is much thicker than t and creates in-
plane stresses in the film. Further, it is assumed 
that during the deposition of the film on the 
substrate, both of them have a temperature 𝑇𝐷 
and after deposition the temperature of the sys-
tem will change by ∆𝑇. In addition, the film is 
considered elastic and initially free of defor-
mation. Then the compressive axially symmet-
ric in two directions stress of the film will be 

𝜎11 = 𝜎22 = −𝜎0 = −[𝐸 (1− 𝜈)⁄ ] � Δ𝛼𝑑𝑇,

𝑇𝐷

𝑇𝐷−∆𝑇

 (28) 

where Δ𝛼 = 𝛼𝑠 − 𝛼. Consider the case Δ𝛼 > 0 
and 𝜎0 > 0. 

 According to the theory of Karman 
plates [44], the deflection of the film from the 
plane (deflection) w satisfies the equations: 

𝐷∇4𝑤 −  (𝑁11𝑤∙11 + 𝑁22𝑤∙22 + 
 
+2𝑁12𝑤∙12) = −𝑝 

(29) 

1
𝐸𝑡
∇4𝐹 = 𝑤∙12

2 − 𝑤∙11𝑤∙22.                            (30) 

Here, ∇4  – a biharmonic operator; 
D = Et3 [12(1 − ν2)]⁄  - bending stiffness of 
the plate; w-offset perpendicular to the plane 
(𝑥1, 𝑥2); 𝑝 – a component of stress, acting per-
pendicular to the plate under the influence of 
the substrate; (𝑤)∙𝛼 ≡ 𝜕(𝜎𝛼) 𝜕𝑥𝛼;⁄ 𝑁𝛼𝛽 =
∫𝜎𝛼𝛽𝑑𝑥3  –  the resultant force acting in the 
plane of the plate; 𝐹 – Airy stress, for which 
𝑁11 = 𝐹∙22,𝑁22 = 𝐹∙11,𝑁12 = −𝐹∙12 . Equality 
(29) represents the equilibrium moment equa-
tion, and (30) the compatibility equation ensur-
ing the existence of the gradient shift in the 
plane, 𝑢𝛼𝛽. We will neglect the tangent com-
ponents of the traces that appear on the plate 
under the action of the substrate. This is a 
standard approximation for the analysis of cor-
rugation of a thin film under the influence of a 
substrate [46], the accuracy of which can be 
verified by detailed analysis of one-
dimensional modes. The average surface stress 
associated with plate displacements is repre-
sented as 

 𝐸𝛼𝛽 = 1
2
�𝑢𝛼,𝛽 + 𝑢𝛽,𝛼� + 1

2
𝑤∙𝛼𝑤∙𝛽; 

 𝑁𝛼𝛽 = [𝐸 (1 − 𝜈2)⁄ ] x 

x ��1-ν�Eαβ + νEγγδαβ� ; 

Mαβ = D ��1-ν�w∙αβ + ν ∙ w∙γγδαβ�  – 
non-adjustable ratios representing the moment 
of the bend tensor. 

In the absence of bends, the film has a 
state of uniform stress, determined by the 
equalities 𝑁11 = 𝑁22 = −𝜎0𝑡, 𝑁12 = 0 . The 
classical bend analysis based on linearization 
of equations (29) and (30) leads to the equa-
tions  

𝐷∇4𝑤 + 𝜎0𝑡∇2𝑤 = −𝑝                                  (31) 

∇4∆𝐹 = 0,                                                         (32) 



Azərbaycan Mühəndislik Akademiyasının Xəbərləri 
2021. Cild 13, № 2. Səh. 7–26 
A.M. Paşayev, Ə.X. Canəhmədov 

Herald of the Azerbaijan Engineering Academy 
2021. Vol. 13, № 2. Pp. 7–26    

A.M. Pashayev, A.Kh. Janahmadov 
 

18 

𝐹 = −1
2

(𝑥12 + 𝑥12)𝜎0𝑡 + ∆𝐹.   The system of 
equations (31) - (32) has periodic solutions 

𝑤 = 𝑤�𝑐𝑜𝑠(𝑘1𝑥1)𝑐𝑜𝑠(𝑘2𝑥2),      

𝑝 = �̂�𝑐𝑜𝑠(𝑘1𝑥1)𝑐𝑜𝑠(𝑘2𝑥2),                          (33) 

at which equation (31) takes the form 

(𝐷 ∙ 𝑘4 − 𝜎0𝑡𝑘2)𝑤� = −�̂�,                             (34) 

where 𝑘 = �𝑘12 + 𝑘22. 

For an infinitely deep substrate under 
normal load 𝑝 in (29), provided that there are 
no tangent traces on the surface, the exact solu-
tion for the normal deviation, 𝛿, has the form 

𝛿 = 𝛿 cos(𝑘1𝑥1)𝑐𝑜𝑠(𝑘2𝑥2),                          (35) 

where 𝛿 = 2�̂� (𝐸�𝑠𝑘)⁄   𝑐  𝐸�𝑠 = 𝐸𝑠 (1 − 𝜈𝑠2)⁄ .   

The effect of the boundary conditions on 
the displacements along the tangential direc-
tions to the substrate surface is insignificant 
and therefore neglected. Under the condition 
𝑤� = 𝛿  from equation (34) and 𝛿 = 2�̂� (𝐸�𝑠𝑘)⁄  
we obtain the equation for the eigenvalues 𝑘: 

𝜎0𝑡 = 𝐷𝑘2 + 𝐸�𝑠 2𝑘⁄                                       (36) 

The critical value of the bending stress,  
𝜎0𝑐, which is the minimum over 𝑘 of equation 
(36), attained at 

𝑘𝑐 ∙ 𝑡 = (3𝐸�𝑠 𝐸�⁄ )
1
3,                                          (37) 

defined by the expression 

𝜎0𝑐 =
1
4
𝐸�(3𝐸�𝑠 𝐸�⁄ )2/3,                                   (38) 

where 𝐸� = 𝐸 (1 − 𝜈2).⁄    

The right-hand sides of formulas (3) and 
(38) coincide. However, formula (38) was ob-

tained for the residual stress 𝜎0  in the initial 
state of the film and, moreover, 𝜎0  can be 
much larger than the critical value 𝜎0𝑐 (see Fig. 
2).  

 
Figure 2 – The dependence of the bending amplitude of 
a thin layer, w�l t⁄ , is considered as a function of σ0 σ0c⁄  
for three modes. The wavelength (and slope in the case 
of the herringbone pattern) corresponds to its critical 
value at the onset of bending deformation. 

 
 
Equality (38) is valid for a one-

dimensional stress that causes corrugation with 
plane tension. This fact is well known [46]. In 
the case of a biaxially symmetric stress, the 
critical stress is applicable only for a one-
dimensional mode with 𝑘1 = 𝑘2  and 𝑘2 = 0 , 
but for any mode the wavenumbers must satis-
fy the equality 

�𝑘12 + 𝑘22 ∙ 𝑡 = 𝑘𝑐 ∙ 𝑡 = (3𝐸�𝑠 𝐸�⁄ )
1
3.        (39) 

As shown in [39], nonlinear tensile dis-
placements of the substrate essentially do not 
affect the behavior of the film. It is believed 
that the substrate has a very large thickness 𝑑, 
comparable to the wavelength of the mode, and 
on its lower surface the normal and tangential 
displacements are zero. It is assumed that the 
difference between the thermal expansion co-
efficients of the film and the substrate is ∆𝛼, 

checkerboard

          "herringbone" 
one-dimensional 
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and the difference between their temperatures 
in the initial unloaded state is ∆𝑇.  

The biaxial compressive stress in an un-
bent film will therefore be equal to 𝜎0 =
𝐸∆𝛼 ∆𝑇 (1 − 𝜈)⁄  if the substrate is very thick. 

 Let us consider square modes of the 
"checkerboard" type ("check board mode" in 
the terminology of [39]) with a wavelength 𝐿 
in the 𝑥1 and 𝑥2 directions, determined by the 
critical condition (37); 

 2𝜋 𝑘1⁄ = 2𝜋 𝑘2⁄ = 𝐿 = √2 ∙ 𝐿𝐶 , 𝐿𝐶 =
2𝜋 𝑘𝐶⁄ C. The "checkerboard" cell in this case 
is a rectangular parallelepiped of dimension 
𝐿 × 𝐿 × 𝑑.  

A very small initial deformation, prede-
termined by the fact that the uncompressed 
system at ∆𝑇 = 0 has a weak average surface 
deviation, is written in the form 

𝑤 = 𝑤�𝑙 cos(𝑘1𝑥1)𝑐𝑜𝑠(𝑘2𝑥2),                      (40) 

where 𝑤�𝑙 𝑡⁄ = 0,02.  

The periodicity conditions applied to a 
cell as a result of all five nodal degrees of free-
dom are the same on both sides of the cell par-
allel to the 𝑥1 axis and similarly for the 𝑥2 axis. 
In addition, at each corner of the cell, the con-
ditions 𝜕𝑤 𝜕𝑥1⁄ = 0  and 𝜕𝑤 𝜕𝑥2⁄ = 0  lead to 
the fact that the rises alternate with dips on the 
sides of the cell. 

Modes of the "checkerboard" type are in-
deed determined by deviations along the nor-
mal, approximately described by the equations 

𝑤 = 𝑤� cos(𝑘1𝑥1)𝑐𝑜𝑠(𝑘2𝑥2)                        (41) 

The numerical relationship between the 
amplitude of the mode, 𝑤� 𝑡⁄ , defined as the 
half-difference between the maximum and 
minimum deviations, and the ratio 𝜎0 𝜎0𝑐⁄  is 
illustrated in Fig. 2 [39]. 

Fig. 2 shows that the deviations of the 
one-dimensional mode lie between the devia-
tions of the "checkerboard" and "herringbone" 
modes.  

As shown in [39], the minimum of the 
configuration energy is attained at 𝐿 𝐿𝐶 ≅ 1⁄ , 
and under this condition, the deflection along 
the normal has a herringbone mode.  

A typical image of such a mode is shown 
in Fig. 3 [39]. 

 

Figure 3 – A gold thin film on a substrate having a pat-
tern with a circular flat depression a few millimeters in 
diameter. A herringbone pattern appears in the center of 
the cell outside the edge of the spot. 

 

Nonlinear waves of localized plastic flow 
The clearest physical meaning of the 

"checkerboard" distribution of stresses and 
strains in a thin film was obtained in [47], 
where the theoretical substantiation of the 
mechanism of the interface between the film 
and the substrate was given for the first time. 

According to the authors, the curing of the 
paint and varnish coating (PVC) leads to the 
formation of a kind of surface layer of the sub-
strate in the form of a thin film lying on the 
substrate. This surface layer, according to the 
concept of physical mesomechanics, is an in-
dependent subsystem in a deformable (under 
the influence of external load) solid. The inter-
face in the thin film-substrate system is of par-
ticular interest.  
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First, when a thin film is coupled to a sub-
strate, a pronounced interface is formed, on 
which a geometrically correct “checkerboard” 
distribution of stresses and strains is realized, 
and the thickness of the film can be taken as 
the interface thickness in theoretical analysis.  

Second, a thin film is a highly nonequilib-
rium system. This is due both to its highly de-
veloped surface at a small volume and to a 
mismatch at the interface of the mating media 
(with different elastic moduli and thermal ex-
pansion). As a consequence, a nonequilibrium 
thin film in the initial state should have a clus-
ter structure that will use structural-phase tran-
sitions in the fields of external influences of 
any nature [2]. A wide range of atomic config-
urations in the resulting surface layer causes 
the development of more intense plastic de-
formation in it than in the bulk of the crystal. 
The necessity of compatibility of the processes 
of plastic flow of the surface layer and the 
crystalline substrate causes the appearance of a 
quasiperiodic distribution of stresses and 
strains at the interface (their interface). 

The analysis of theoretical and experi-
mental studies carried out in [47] on the devel-
opment of a localized plastic flow in the form 
of double spirals in nanostructured layers of a 
deformable solid led to the conclusion that the 
interface of dissimilar media in a two-
dimensional dimension should have the form 
of a "checkerboard". Modeling the interface 
"surface layer-substrate" in a loaded solid, car-
ried out in [48, 49, 29] on the basis of a sto-
chastic approach in the framework of a three-
dimensional model, confirmed the conclusion 
[47] about the "checkerboard" distribution of 
local stresses and strains when two dissimilar 
media are coupled.  

Received theoretical confirmation and ex-
planation of the channeling effect of local plas-

tic flow in nanostructured surface layers along 
the cells of the "checkerboard" interface struc-
ture with tensile normal stresses.  

Direct experimental confirmation of the 
"checkerboard" character of the distribution of 
stresses and strains at the interface "surface 
layer-base crystal" was obtained in [50] on the 
example of an experimental study of alternat-
ing bending of flat samples of polycrystalline 
VT1-0 titanium with a hydrogenated surface 
layer. The "checkerboard" character of stress 
distribution at the interface "nanostructured 
surface layer - the main volume of material" 
provides the effect of plastic flow channeling 
and extrusion of the surface material in the 
form of double spirals of intertwining meso-
bands of localized deformation (Fig. 4 [51]). 
As a result, deformation defects reach the sur-
face, rather than being pumped into the depth 
of the loaded sample. The latter retards the de-
velopment of deformation macro-localization 
in the sample, causing a simultaneous increase 
in both the strength and plasticity of the mate-
rial. 

 

Figure 4 – The experimental pictures of stationary cor-
rugation of the surface layer in a deformable solid; ten-
sion at 293 K: a – a polycrystalline alloy Zr – 2.5% Nb; 
b, c, d – low-carbon St3; stretching at T=293K after ul-
trasonic treatment and subsequent annealing at 
T=1103K; ε=13 (b), 28 (c), 32% (d); scanning electron 
microscopy, x250. 
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The cells of the "checkerboard" distribu-

tion of tensile and compressive normal stresses 
determine the corresponding cellular structure 
of the distribution of material in a thin film: the 
material from the cells of compressive normal 
stresses is displaced into the cells of tensile 
normal stresses.  

Mass transfer occurs in the field of shear 
stresses, which also have a "checkerboard" dis-
tribution at the interface but are phase-shifted 
by 𝜋 2⁄  in space. 

 
Stochastic approach to calculating in-

ternal stresses and strains. Since the film is 
rigidly bound to the substrate, then under load-
ing up to the beginning of fracture, both the 
film and the substrate should experience the 
same degree of deformation. Hence it follows 
that elastic stresses in the film 𝜎𝑓 are related to 
stresses in the substrate 𝜎𝑠 as follows 

𝜎𝑓 =
1 − 𝜈𝑠2

1 − 𝜈𝑓2
𝐸𝑓
𝐸𝑠
𝜎𝑠,                                           (42) 

where 𝐸𝑓, 𝐸𝑠, , 𝜈𝑓 and 𝜈𝑠 – Young's moduli and 
Poisson's ratios of the film and substrate mate-
rial, respectively. 

 Due to the small grain size and high 
density of grain boundaries, dislocation plastic-
ity in nanostructured films is limited. As a re-
sult, deformation develops at the mesoscale 
level under the conditions of a "checkerboard" 
stress distribution at the "film-substrate" inter-
face, while the role of the maximum shear 
stresses, which determine the directions of 
shears in the deformed film, significantly in-
creases.  

Since plastic deformation can occur only 
in the region of tensile normal stresses [47, 
51], when thin films are stretched, meso-bands 

of localized deformation develop, decorating 
the “checkerboard” structure of the interface. 

 The conjugation of the modified sur-
face layer and the substrate in a loaded solid 
causes two types of perturbations: nano-
configurational perturbations of the atomic 
structure at the interface between two dissimi-
lar media, such as atomic clusters of different 
configurations, and a sinusoidal field of tensile 
and compressive elastic stresses in the surface 
layer due to the inequality of the elastic moduli 
of the surface layer and the substrate. 

 Self-organization of nanoconfiguration-
al perturbations at the interface "modified sur-
face layer - substrate" in a sinusoidal elastic 
field of change in tensile and compressive 
normal stresses in the surface layer causes a 
"checkerboard" distribution of stresses and ine-
lastic deformations in the surface layer. 

Figure 5 [52] shows the evolution of the 
"checkerboard" organization of atomic config-
urational perturbations at the interface "modi-
fied surface layer - substrate" in a three-
dimensional elastic field of the surface layer 
with a sequential increase in the degree of de-
formation of the sample in the range 
0.01...0.5%.  

The dark areas in Fig.5 correspond to the 
zones of compressive normal stresses, and the 
light ones correspond to the zones of tensile 
stresses. 

 

Figure 5 – Pattern of inelastic deformation of the sur-
face layer at different degrees of uniaxial tension of the 
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sample: ε=0.01 (a); 0.05 (b); 0.1 (c); 0.2 (g); 0.3 (d); 
0.5% (e) 

The need to interface the surface layer 
with a substrate that exhibits higher shear sta-
bility leads to corrugation of the surface layer. 
The character of this corrugation changes in 
stages as the degree of deformation increases. 
Figure 6 [29] shows a pattern of corrugation of 
the surface layer of various thicknesses de-
pending on the length 𝑙𝑥  of the film section 
under consideration.  

 

 

Figure 6 – Profiles of normal εyy and tangential εxy de-
formation components depending on the length lx at the 
interface thickness of 10-6 (a), 10-7 (b), and  10-8  (c) m. 
 
 

The normal 𝜎(𝑥𝑖)  and tangential 𝜏(𝑥𝑖) 
stress components at the point 𝑥𝑖 of the simu-
lated section of the film/substrate interface are 
represented by the following expressions: 

𝜎(𝑥𝑖) = (𝐸𝑧(𝑥𝑖) − 𝛼𝑇)𝐸,                              (43) 

𝜏(𝑥𝑖) = �𝐸𝑦(𝑥𝑖) − 𝛼𝑇�𝐺,                             (44) 

where 𝑥𝑖 = 𝑖 ∙ 𝑙𝑥 𝑛⁄ , 𝑖 = 0,1, … ,𝑛  – the set of 
dividing points of the considered section [0, 𝑙𝑥] 
of the film; 𝐸 and 𝐺 – moduli of elasticity and 
shear of the substrate; 𝑇 – temperature of the 
simulated section of the interface; α is the coef-
ficient of linear thermal expansion of the sub-
strate material; 𝐸𝑧(𝑥𝑖)  and 𝐸𝑦(𝑥𝑖)  values at 
𝑠 = 𝑥𝑖  of deformation diagrams 𝐸𝑧(𝑠)  and 
𝐸𝑦(𝑠), which under symmetry conditions im-
posed on deformations at the boundaries of the 
deformable region 

𝐸𝑢(𝐿) = 𝐸𝑢(−𝐿),    𝑢 = 𝑥, 𝑦, 𝑧,                    (45) 

have the form: 

𝐸𝑥(𝑠) = 0; 𝐸𝑦(𝑠) = 𝐿 �𝑠𝑒𝑐ℎ 2𝑠
𝐿
− 1� ; 

𝐸𝑧(𝑠) = 𝑠 − 𝐿 ∙ 𝑡𝑔ℎ
2𝑠
𝐿

 
(46) 

and do not depend on time; 𝑡ℎ𝑧  and 𝑠𝑒𝑐ℎ𝑧  – 
the hyperbolic tangent and secant functions:  

𝑡ℎ𝑧 = (𝑒𝑧 − 𝑒−𝑧) (𝑒𝑧 + 𝑒−𝑧)⁄ , 

𝑠𝑒𝑐ℎ𝑧 = 2 (𝑒𝑧 + 𝑒−𝑧)⁄ . 

Normal 𝜀𝑦𝑦(𝑥𝑖) and tangential 𝜀𝑥𝑦(𝑥𝑖) de-
formation profiles are determined by the for-
mulas 

𝜀𝑦𝑦(𝑥𝑖) = 𝐸𝑧(𝑠)|𝑠=𝑥𝑖 ,      

𝜀𝑥𝑦(𝑥𝑖) = 𝐸𝑦(𝑠)�
𝑠=𝑥𝑖

.                                    (47) 

Based on the measured parameters, the 
level of internal stresses was calculated using 
formula (43). 
 
Results and its discussion 

The deflection of the steel console with 
PES coating was 𝑑 = 285.47𝜇𝑚. The results 
of measuring the film thickness before and af-
ter curing showed that the initial average 
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thickness of the "wet" film was ℎ0 =
51.21𝜇𝑚, and after curing ℎ1 = 47.06𝜇𝑚.  

The results of AFM studies of the micro-
relief (profilograms) and volumetric topogra-
phy of the surface of the PES film showed that 
the mean wavelength of the corrugation is 
𝜆 = 1.25µ𝑚 with an amplitude of 𝐴 = 96𝑛𝑚  

Since the total thickness of the coating 
(𝐻 = ℎ1 = 47.06𝜇𝑚) is more than 35 times 
the length of the RMR wavelength ( 𝜆 =
1.25𝜇𝑚), it can be assumed that the thickness 
is much greater than the lengt h (Figure 7). 

Considering the roughness profile in the 
framework of multifractal analysis, it can be 
noted that it has the property of invariance, 
when the same elementary geometric object (in 
our case, a straight cone) is continuously re-
peated over the entire area of the investigated 
area [35]. 

 
а) 

 
b) 

Figure 7 – The volumetric topography (a) and average 
micro-profile (b) of the sample (50 × 50µm) of polyes-
ter urethane varnish. 

 
After measuring all the parameters using 

formulas (1), (2), and (43), the internal normal 
stresses in the PEUL film were calculated (Ta-
ble). 
 

Table. The values of the internal stresses of 
the PES film, determined by different methods 

Method Internal stress, 
MPa 

Cantilevered [12] 2.921 
Thickness difference [13] 2.431 
RMR parameters measu-ring 2.626 

 
 

As follows from the table, the internal 
stresses measured by all three methods are rel-
atively the same and amount to about ~0.1𝐸, 
the difference between the obtained values 
does not exceed ~20%. 

However, despite the fact that measure-
ments of internal stresses by three methods 
give close values, the proposed method is 
much simpler than the other two in terms of 
convenience. 

The advantage of this method is the ability 
to evaluate internal stresses in a polymer film 
solely by the geometric characteristics of the 
cured profile irregularities (wavelength, ampli-
tude, thickness), without the need to measure 
the "wet" coating thickness and regardless of 
the mechanical properties and dimensions of 
the substrate. 

After curing the polymer film at low tem-
peratures, the calculations assumed that the 
thickness ℎ of the elastic film and the thickness 
𝐻 of the underlying viscoelastic layer are small 
values of the same order, forming a kind of 
surface layer of the bulk of the substrate, 
which we conditionally called a "thin film". 
The film thickness is taken as the thickness of 
the surface layer / substrate interface, which 
makes it possible to compare the results of ex-
perimental studies with models of physical me-
somechanics of heterogeneous media.  

Measurements of the parameters of the 
regular microrelief (RMR) of the film surface 
make it possible to describe the kinetics of film 
formation and growth and to estimate the total 
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energy level of the film/substrate system with 
the calculation of the critical values of the am-
plitude and wavelength of nonlinear film vibra-
tions at which their stability appears, providing 
certain steady-state, independent from time to 
time, the values of the amplitude and wave-
length of oscillations with the corresponding 
formed profile of deformations on the surface 
of the film. 

The real conditions for curing the paint-
work (PVC) are a random process. In this re-
gard, the distribution of stresses and strains at 
the film / substrate interface is naturally mod-
eled on the basis of a stochastic approach [49, 
50]. The introduction of stochastics is due to 
the fact that, within the framework of this ap-
proach, the elements of the medium of the 
mesoscale level are considered, the physical 
parameters of which (such as temperature, 
pressure, elastic moduli) cannot be measured 
“absolutely accurately”, as for objects of the 
macrocosm. At the micro level, their own laws 
operate, there it is impossible to unambiguous-
ly determine the parameters of physical ob-
jects, they can only be spoken of as intercon-
nected random variables. It should be noted 
that the mesoscale level is a connecting and 
directly determining link in the system of fac-
tors that affect the behavior of surfaces and 
interfaces of a deformable solid. 
 
Conclusion 

It is shown that the contact of the cured 
coating with the elastic base can be considered 

as the interface of the surface layer in the form 
of a thin film of paintwork varnish with the 
bulk of the substrate material. 

The loading of the substrate solid causes 
the distribution of stresses and strains on the 
outer surface of the film in the form of a 
"checkerboard" effect. As a result, deformation 
defects emerge on the surface and are not 
pumped into the depth of the loaded specimen, 
thereby retarding the development of defor-
mation macro-location in the specimen, caus-
ing a simultaneous increase in the strength and 
plasticity of the specimen material. 

The proposed method for assessing inter-
nal stresses based on measuring the parameters 
of the regular microrelief (RMR) of the film 
surface makes it possible to describe the kinet-
ics of film formation and determine the critical 
values of the main characteristics of vibrations, 
which can be used to reveal stability. 

To calculate internal stresses and strains, a 
stochastic approach was used, which takes into 
account the peculiarities of the flow of the film 
/ substrate interface at the meso- and mi-
croscale levels, caused by the uncontrollability 
of external conditions affecting the properties 
of the sample. The values of the shrinkage 
stresses of the polyester urethane coating, cal-
culated by the proposed and cantilever meth-
ods, by the method of thickness difference, are 
relatively the same (the difference does not 
exceed ~20%) and are of the order of ~0.1𝐸.  
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